'Weak Dependency Graph [60.0]'
------------------------------
Answer:           YES(?,O(n^1))
Input Problem:    innermost runtime-complexity with respect to
  Rules:
    {  f(0()) -> cons(0(), n__f(n__s(n__0())))
     , f(s(0())) -> f(p(s(0())))
     , p(s(X)) -> X
     , f(X) -> n__f(X)
     , s(X) -> n__s(X)
     , 0() -> n__0()
     , activate(n__f(X)) -> f(activate(X))
     , activate(n__s(X)) -> s(activate(X))
     , activate(n__0()) -> 0()
     , activate(X) -> X}

Details:         
  We have computed the following set of weak (innermost) dependency pairs:
   {  f^#(0()) -> c_0(0^#())
    , f^#(s(0())) -> c_1(f^#(p(s(0()))))
    , p^#(s(X)) -> c_2()
    , f^#(X) -> c_3()
    , s^#(X) -> c_4()
    , 0^#() -> c_5()
    , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
    , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
    , activate^#(n__0()) -> c_8(0^#())
    , activate^#(X) -> c_9()}
  
  The usable rules are:
   {  p(s(X)) -> X
    , s(X) -> n__s(X)
    , 0() -> n__0()
    , activate(n__f(X)) -> f(activate(X))
    , activate(n__s(X)) -> s(activate(X))
    , activate(n__0()) -> 0()
    , activate(X) -> X
    , f(0()) -> cons(0(), n__f(n__s(n__0())))
    , f(s(0())) -> f(p(s(0())))
    , f(X) -> n__f(X)}
  
  The estimated dependency graph contains the following edges:
   {f^#(0()) -> c_0(0^#())}
     ==> {0^#() -> c_5()}
   {f^#(s(0())) -> c_1(f^#(p(s(0()))))}
     ==> {f^#(X) -> c_3()}
   {f^#(s(0())) -> c_1(f^#(p(s(0()))))}
     ==> {f^#(s(0())) -> c_1(f^#(p(s(0()))))}
   {f^#(s(0())) -> c_1(f^#(p(s(0()))))}
     ==> {f^#(0()) -> c_0(0^#())}
   {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
     ==> {f^#(X) -> c_3()}
   {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
     ==> {f^#(s(0())) -> c_1(f^#(p(s(0()))))}
   {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
     ==> {f^#(0()) -> c_0(0^#())}
   {activate^#(n__s(X)) -> c_7(s^#(activate(X)))}
     ==> {s^#(X) -> c_4()}
   {activate^#(n__0()) -> c_8(0^#())}
     ==> {0^#() -> c_5()}
  
  We consider the following path(s):
   1) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(s(0())) -> c_1(f^#(p(s(0()))))
       , f^#(0()) -> c_0(0^#())}
      
      The usable rules for this path are the following:
      {  p(s(X)) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(s(X)) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , f^#(s(0())) -> c_1(f^#(p(s(0()))))
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , f^#(0()) -> c_0(0^#())}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(X)) -> X
               , activate(n__0()) -> 0()
               , activate(X) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [1]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(0()) -> c_0(0^#())}
            and weakly orienting the rules
            {  p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(0()) -> c_0(0^#())}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  f^#(0()) -> c_0(0^#())
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [6]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0() -> n__0()}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(0()) -> c_0(0^#())
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0() -> n__0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [8]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [7]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [12]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [4]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [1]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__s(X)) -> s(activate(X))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  0() -> n__0()
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(0()) -> c_0(0^#())
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__s(X)) -> s(activate(X))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [1]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [2]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [12]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f(0()) -> cons(0(), n__f(n__s(n__0())))}
            and weakly orienting the rules
            {  activate(n__s(X)) -> s(activate(X))
             , f(X) -> n__f(X)
             , 0() -> n__0()
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(0()) -> c_0(0^#())
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f(0()) -> cons(0(), n__f(n__s(n__0())))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [1]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [15]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  s(X) -> n__s(X)
                 , activate(n__f(X)) -> f(activate(X))
                 , f(s(0())) -> f(p(s(0())))
                 , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
              Weak Rules:
                {  f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , activate(n__s(X)) -> s(activate(X))
                 , f(X) -> n__f(X)
                 , 0() -> n__0()
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , f^#(0()) -> c_0(0^#())
                 , p(s(X)) -> X
                 , activate(n__0()) -> 0()
                 , activate(X) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  s(X) -> n__s(X)
                   , activate(n__f(X)) -> f(activate(X))
                   , f(s(0())) -> f(p(s(0())))
                   , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
                Weak Rules:
                  {  f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , activate(n__s(X)) -> s(activate(X))
                   , f(X) -> n__f(X)
                   , 0() -> n__0()
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , f^#(0()) -> c_0(0^#())
                   , p(s(X)) -> X
                   , activate(n__0()) -> 0()
                   , activate(X) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_1(5) -> 11
                 , f_2(7) -> 4
                 , f_2(7) -> 5
                 , f_2(7) -> 11
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 11
                 , 0_2() -> 7
                 , 0_2() -> 9
                 , 0_3() -> 17
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 5
                 , cons_0(2, 2) -> 11
                 , cons_2(9, 13) -> 4
                 , cons_2(9, 13) -> 5
                 , cons_2(9, 13) -> 11
                 , cons_3(17, 18) -> 4
                 , cons_3(17, 18) -> 5
                 , cons_3(17, 18) -> 11
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_0(2) -> 11
                 , n__f_1(5) -> 4
                 , n__f_1(5) -> 5
                 , n__f_1(5) -> 11
                 , n__f_2(7) -> 4
                 , n__f_2(7) -> 5
                 , n__f_2(7) -> 11
                 , n__f_2(14) -> 13
                 , n__f_3(19) -> 18
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 5
                 , n__s_0(2) -> 11
                 , n__s_1(4) -> 4
                 , n__s_2(5) -> 5
                 , n__s_2(5) -> 11
                 , n__s_2(15) -> 14
                 , n__s_3(9) -> 8
                 , n__s_3(20) -> 19
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 5
                 , n__0_0() -> 11
                 , n__0_1() -> 5
                 , n__0_1() -> 11
                 , n__0_2() -> 7
                 , n__0_2() -> 9
                 , n__0_2() -> 15
                 , n__0_3() -> 17
                 , n__0_3() -> 20
                 , s_0(4) -> 4
                 , s_1(5) -> 5
                 , s_1(5) -> 11
                 , s_2(9) -> 8
                 , p_1(5) -> 11
                 , p_2(8) -> 7
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(2) -> 11
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , f^#_1(11) -> 10
                 , f^#_2(7) -> 12
                 , c_0_0(1) -> 3
                 , c_0_1(16) -> 6
                 , c_0_1(16) -> 10
                 , c_0_2(21) -> 12
                 , 0^#_0() -> 1
                 , 0^#_1() -> 16
                 , 0^#_2() -> 21
                 , c_1_1(10) -> 3
                 , c_1_2(12) -> 6
                 , c_1_2(12) -> 10
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   2) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(0()) -> c_0(0^#())}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)
       , p(s(X)) -> X}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , p(s(X)) -> X
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , f^#(0()) -> c_0(0^#())}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__0()) -> 0()
             , activate(X) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__0()) -> 0()
               , activate(X) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p(s(X)) -> X}
            and weakly orienting the rules
            {  activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p(s(X)) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [2]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [3]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(0()) -> c_0(0^#())}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(0()) -> c_0(0^#())}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [7]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0() -> n__0()}
            and weakly orienting the rules
            {  f^#(0()) -> c_0(0^#())
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0() -> n__0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [7]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s(X) -> n__s(X)}
            and weakly orienting the rules
            {  0() -> n__0()
             , f^#(0()) -> c_0(0^#())
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s(X) -> n__s(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [9]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [8]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  s(X) -> n__s(X)
             , 0() -> n__0()
             , f^#(0()) -> c_0(0^#())
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [1]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  activate(n__s(X)) -> s(activate(X))
                 , f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , f(s(0())) -> f(p(s(0())))
                 , f(X) -> n__f(X)}
              Weak Rules:
                {  activate(n__f(X)) -> f(activate(X))
                 , s(X) -> n__s(X)
                 , 0() -> n__0()
                 , f^#(0()) -> c_0(0^#())
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , p(s(X)) -> X
                 , activate(n__0()) -> 0()
                 , activate(X) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  activate(n__s(X)) -> s(activate(X))
                   , f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , f(s(0())) -> f(p(s(0())))
                   , f(X) -> n__f(X)}
                Weak Rules:
                  {  activate(n__f(X)) -> f(activate(X))
                   , s(X) -> n__s(X)
                   , 0() -> n__0()
                   , f^#(0()) -> c_0(0^#())
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , p(s(X)) -> X
                   , activate(n__0()) -> 0()
                   , activate(X) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(5) -> 5
                 , f_1(5) -> 14
                 , f_1(14) -> 4
                 , f_2(15) -> 4
                 , f_2(15) -> 5
                 , f_2(15) -> 14
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 14
                 , 0_2() -> 10
                 , 0_2() -> 15
                 , 0_3() -> 18
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 5
                 , cons_0(2, 2) -> 14
                 , cons_1(5, 7) -> 4
                 , cons_2(10, 11) -> 5
                 , cons_2(10, 11) -> 14
                 , cons_2(15, 11) -> 4
                 , cons_3(18, 19) -> 4
                 , cons_3(18, 19) -> 5
                 , cons_3(18, 19) -> 14
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_0(2) -> 14
                 , n__f_1(4) -> 4
                 , n__f_1(8) -> 7
                 , n__f_2(5) -> 5
                 , n__f_2(5) -> 14
                 , n__f_2(12) -> 11
                 , n__f_2(14) -> 4
                 , n__f_3(15) -> 4
                 , n__f_3(15) -> 5
                 , n__f_3(15) -> 14
                 , n__f_3(20) -> 19
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 5
                 , n__s_0(2) -> 14
                 , n__s_1(5) -> 4
                 , n__s_1(5) -> 5
                 , n__s_1(5) -> 14
                 , n__s_1(9) -> 8
                 , n__s_2(10) -> 16
                 , n__s_2(13) -> 12
                 , n__s_3(21) -> 20
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 5
                 , n__0_0() -> 14
                 , n__0_1() -> 5
                 , n__0_1() -> 9
                 , n__0_1() -> 14
                 , n__0_2() -> 10
                 , n__0_2() -> 13
                 , n__0_2() -> 15
                 , n__0_3() -> 18
                 , n__0_3() -> 21
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(5) -> 14
                 , s_2(10) -> 16
                 , p_1(5) -> 14
                 , p_2(16) -> 15
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(2) -> 14
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , c_0_0(1) -> 3
                 , c_0_1(17) -> 6
                 , 0^#_0() -> 1
                 , 0^#_1() -> 17
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   3) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(s(0())) -> c_1(f^#(p(s(0()))))
       , f^#(0()) -> c_0(0^#())
       , 0^#() -> c_5()}
      
      The usable rules for this path are the following:
      {  p(s(X)) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(s(X)) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , f^#(0()) -> c_0(0^#())
               , f^#(s(0())) -> c_1(f^#(p(s(0()))))
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , 0^#() -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X
             , f^#(0()) -> c_0(0^#())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(X)) -> X
               , 0() -> n__0()
               , activate(X) -> X
               , f^#(0()) -> c_0(0^#())}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [2]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [3]
                  c_0(x1) = [1] x1 + [3]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [1]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__0()) -> 0()}
            and weakly orienting the rules
            {  p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X
             , f^#(0()) -> c_0(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__0()) -> 0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  activate(n__0()) -> 0()
             , p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X
             , f^#(0()) -> c_0(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#() -> c_5()}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__0()) -> 0()
             , p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X
             , f^#(0()) -> c_0(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#() -> c_5()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [4]
                  c_1(x1) = [1] x1 + [1]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__f(X)) -> f(activate(X))
             , activate(n__s(X)) -> s(activate(X))}
            and weakly orienting the rules
            {  0^#() -> c_5()
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__0()) -> 0()
             , p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X
             , f^#(0()) -> c_0(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [1]
                  0() = [5]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [5]
                  n__s(x1) = [1] x1 + [2]
                  n__0() = [5]
                  s(x1) = [1] x1 + [1]
                  p(x1) = [1] x1 + [2]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [0]
                  0^#() = [2]
                  c_1(x1) = [1] x1 + [11]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  s(X) -> n__s(X)
                 , f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , f(s(0())) -> f(p(s(0())))
                 , f(X) -> n__f(X)
                 , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
              Weak Rules:
                {  activate(n__f(X)) -> f(activate(X))
                 , activate(n__s(X)) -> s(activate(X))
                 , 0^#() -> c_5()
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , activate(n__0()) -> 0()
                 , p(s(X)) -> X
                 , 0() -> n__0()
                 , activate(X) -> X
                 , f^#(0()) -> c_0(0^#())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  s(X) -> n__s(X)
                   , f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , f(s(0())) -> f(p(s(0())))
                   , f(X) -> n__f(X)
                   , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
                Weak Rules:
                  {  activate(n__f(X)) -> f(activate(X))
                   , activate(n__s(X)) -> s(activate(X))
                   , 0^#() -> c_5()
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , activate(n__0()) -> 0()
                   , p(s(X)) -> X
                   , 0() -> n__0()
                   , activate(X) -> X
                   , f^#(0()) -> c_0(0^#())}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(9) -> 4
                 , f_1(13) -> 13
                 , f_2(19) -> 13
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 9
                 , 0_1() -> 13
                 , 0_2() -> 15
                 , 0_2() -> 19
                 , 0_3() -> 23
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 13
                 , cons_1(5, 6) -> 4
                 , cons_2(15, 16) -> 4
                 , cons_2(15, 16) -> 13
                 , cons_3(23, 24) -> 13
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 13
                 , n__f_1(4) -> 4
                 , n__f_1(7) -> 6
                 , n__f_2(9) -> 4
                 , n__f_2(13) -> 13
                 , n__f_2(17) -> 16
                 , n__f_3(19) -> 13
                 , n__f_3(25) -> 24
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 13
                 , n__s_1(4) -> 4
                 , n__s_1(8) -> 7
                 , n__s_2(5) -> 10
                 , n__s_2(13) -> 13
                 , n__s_2(18) -> 17
                 , n__s_3(15) -> 20
                 , n__s_3(26) -> 25
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 13
                 , n__0_1() -> 5
                 , n__0_1() -> 8
                 , n__0_1() -> 9
                 , n__0_1() -> 13
                 , n__0_2() -> 15
                 , n__0_2() -> 18
                 , n__0_2() -> 19
                 , n__0_3() -> 23
                 , n__0_3() -> 26
                 , s_0(4) -> 4
                 , s_1(5) -> 10
                 , s_1(13) -> 13
                 , s_2(15) -> 20
                 , p_1(10) -> 9
                 , p_2(20) -> 19
                 , activate_0(2) -> 4
                 , activate_1(2) -> 13
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(9) -> 11
                 , f^#_1(13) -> 12
                 , f^#_2(19) -> 21
                 , c_0_0(1) -> 3
                 , c_0_1(14) -> 11
                 , c_0_1(14) -> 12
                 , c_0_2(22) -> 21
                 , 0^#_0() -> 1
                 , 0^#_1() -> 14
                 , 0^#_2() -> 22
                 , c_1_1(11) -> 3
                 , c_1_2(21) -> 12
                 , c_5_0() -> 1
                 , c_5_1() -> 14
                 , c_5_2() -> 22
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(12) -> 1}
      
   4) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(s(0())) -> c_1(f^#(p(s(0()))))
       , f^#(X) -> c_3()}
      
      The usable rules for this path are the following:
      {  p(s(X)) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(s(X)) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , f^#(s(0())) -> c_1(f^#(p(s(0()))))
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , f^#(X) -> c_3()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , f^#(X) -> c_3()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(X)) -> X
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , f^#(X) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [3]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [1]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , f^#(X) -> c_3()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [8]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [6]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0() -> n__0()}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , f^#(X) -> c_3()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0() -> n__0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [4]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [3]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [8]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__s(X)) -> s(activate(X))
             , f(X) -> n__f(X)}
            and weakly orienting the rules
            {  0() -> n__0()
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , f^#(X) -> c_3()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__s(X)) -> s(activate(X))
               , f(X) -> n__f(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [1]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [1]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [1]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [5]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f(0()) -> cons(0(), n__f(n__s(n__0())))}
            and weakly orienting the rules
            {  activate(n__s(X)) -> s(activate(X))
             , f(X) -> n__f(X)
             , 0() -> n__0()
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , p(s(X)) -> X
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , f^#(X) -> c_3()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f(0()) -> cons(0(), n__f(n__s(n__0())))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [8]
                  0() = [14]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [1]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [6]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [12]
                  activate(x1) = [1] x1 + [8]
                  f^#(x1) = [1] x1 + [8]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [1]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [15]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  s(X) -> n__s(X)
                 , activate(n__f(X)) -> f(activate(X))
                 , f(s(0())) -> f(p(s(0())))
                 , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
              Weak Rules:
                {  f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , activate(n__s(X)) -> s(activate(X))
                 , f(X) -> n__f(X)
                 , 0() -> n__0()
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , p(s(X)) -> X
                 , activate(n__0()) -> 0()
                 , activate(X) -> X
                 , f^#(X) -> c_3()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  s(X) -> n__s(X)
                   , activate(n__f(X)) -> f(activate(X))
                   , f(s(0())) -> f(p(s(0())))
                   , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
                Weak Rules:
                  {  f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , activate(n__s(X)) -> s(activate(X))
                   , f(X) -> n__f(X)
                   , 0() -> n__0()
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , p(s(X)) -> X
                   , activate(n__0()) -> 0()
                   , activate(X) -> X
                   , f^#(X) -> c_3()}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_1(5) -> 4
                 , f_1(5) -> 5
                 , f_1(5) -> 11
                 , f_2(7) -> 4
                 , f_2(7) -> 5
                 , f_2(7) -> 11
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 11
                 , 0_2() -> 7
                 , 0_2() -> 9
                 , 0_3() -> 16
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 5
                 , cons_0(2, 2) -> 11
                 , cons_2(9, 13) -> 4
                 , cons_2(9, 13) -> 5
                 , cons_2(9, 13) -> 11
                 , cons_3(16, 17) -> 4
                 , cons_3(16, 17) -> 5
                 , cons_3(16, 17) -> 11
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_0(2) -> 11
                 , n__f_1(5) -> 4
                 , n__f_1(5) -> 5
                 , n__f_1(5) -> 11
                 , n__f_2(7) -> 4
                 , n__f_2(7) -> 5
                 , n__f_2(7) -> 11
                 , n__f_2(14) -> 13
                 , n__f_3(18) -> 17
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 5
                 , n__s_0(2) -> 11
                 , n__s_1(4) -> 4
                 , n__s_2(5) -> 5
                 , n__s_2(5) -> 11
                 , n__s_2(15) -> 14
                 , n__s_3(9) -> 8
                 , n__s_3(19) -> 18
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 5
                 , n__0_0() -> 11
                 , n__0_1() -> 5
                 , n__0_1() -> 11
                 , n__0_2() -> 7
                 , n__0_2() -> 9
                 , n__0_2() -> 15
                 , n__0_3() -> 16
                 , n__0_3() -> 19
                 , s_0(4) -> 4
                 , s_1(5) -> 5
                 , s_1(5) -> 11
                 , s_2(9) -> 8
                 , p_1(5) -> 11
                 , p_2(8) -> 7
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(2) -> 11
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , f^#_1(11) -> 10
                 , f^#_2(7) -> 12
                 , c_1_1(10) -> 3
                 , c_1_2(12) -> 6
                 , c_1_2(12) -> 10
                 , c_3_0() -> 1
                 , c_3_0() -> 3
                 , c_3_1() -> 6
                 , c_3_1() -> 10
                 , c_3_2() -> 12
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   5) {  activate^#(n__s(X)) -> c_7(s^#(activate(X)))
       , s^#(X) -> c_4()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)
       , p(s(X)) -> X}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , p(s(X)) -> X
               , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
               , s^#(X) -> c_4()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(X) -> X
             , 0() -> n__0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(X) -> X
               , 0() -> n__0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s^#(X) -> c_4()}
            and weakly orienting the rules
            {  activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s^#(X) -> c_4()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [4]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [4]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__s(X)) -> c_7(s^#(activate(X)))}
            and weakly orienting the rules
            {  s^#(X) -> c_4()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__s(X)) -> c_7(s^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p(s(X)) -> X}
            and weakly orienting the rules
            {  activate^#(n__s(X)) -> c_7(s^#(activate(X)))
             , s^#(X) -> c_4()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p(s(X)) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__0()) -> 0()}
            and weakly orienting the rules
            {  p(s(X)) -> X
             , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
             , s^#(X) -> c_4()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__0()) -> 0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s(X) -> n__s(X)}
            and weakly orienting the rules
            {  activate(n__0()) -> 0()
             , p(s(X)) -> X
             , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
             , s^#(X) -> c_4()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s(X) -> n__s(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [4]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [8]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  s(X) -> n__s(X)
             , activate(n__0()) -> 0()
             , p(s(X)) -> X
             , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
             , s^#(X) -> c_4()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [1]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [4]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [12]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [4]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  activate(n__s(X)) -> s(activate(X))
                 , f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , f(s(0())) -> f(p(s(0())))
                 , f(X) -> n__f(X)}
              Weak Rules:
                {  activate(n__f(X)) -> f(activate(X))
                 , s(X) -> n__s(X)
                 , activate(n__0()) -> 0()
                 , p(s(X)) -> X
                 , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
                 , s^#(X) -> c_4()
                 , activate(X) -> X
                 , 0() -> n__0()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  activate(n__s(X)) -> s(activate(X))
                   , f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , f(s(0())) -> f(p(s(0())))
                   , f(X) -> n__f(X)}
                Weak Rules:
                  {  activate(n__f(X)) -> f(activate(X))
                   , s(X) -> n__s(X)
                   , activate(n__0()) -> 0()
                   , p(s(X)) -> X
                   , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
                   , s^#(X) -> c_4()
                   , activate(X) -> X
                   , 0() -> n__0()}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(5) -> 5
                 , f_1(5) -> 12
                 , f_1(12) -> 4
                 , f_2(13) -> 4
                 , f_2(13) -> 5
                 , f_2(13) -> 12
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 12
                 , 0_2() -> 8
                 , 0_2() -> 13
                 , 0_3() -> 15
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 5
                 , cons_0(2, 2) -> 12
                 , cons_1(5, 7) -> 4
                 , cons_2(8, 9) -> 5
                 , cons_2(8, 9) -> 12
                 , cons_2(13, 9) -> 4
                 , cons_3(15, 16) -> 4
                 , cons_3(15, 16) -> 5
                 , cons_3(15, 16) -> 12
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_0(2) -> 12
                 , n__f_1(4) -> 4
                 , n__f_1(4) -> 7
                 , n__f_2(5) -> 5
                 , n__f_2(5) -> 12
                 , n__f_2(10) -> 9
                 , n__f_2(12) -> 4
                 , n__f_3(13) -> 4
                 , n__f_3(13) -> 5
                 , n__f_3(13) -> 12
                 , n__f_3(17) -> 16
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 5
                 , n__s_0(2) -> 12
                 , n__s_1(5) -> 4
                 , n__s_1(5) -> 5
                 , n__s_1(5) -> 12
                 , n__s_2(8) -> 14
                 , n__s_2(11) -> 10
                 , n__s_3(18) -> 17
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 5
                 , n__0_0() -> 12
                 , n__0_1() -> 5
                 , n__0_1() -> 12
                 , n__0_2() -> 8
                 , n__0_2() -> 11
                 , n__0_2() -> 13
                 , n__0_3() -> 15
                 , n__0_3() -> 18
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(5) -> 12
                 , s_2(8) -> 14
                 , p_1(5) -> 12
                 , p_2(14) -> 13
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(2) -> 12
                 , s^#_0(2) -> 1
                 , s^#_0(4) -> 3
                 , s^#_1(5) -> 6
                 , c_4_0() -> 1
                 , c_4_0() -> 3
                 , c_4_1() -> 6
                 , activate^#_0(2) -> 1
                 , c_7_0(3) -> 1
                 , c_7_1(6) -> 1}
      
   6) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(0()) -> c_0(0^#())
       , 0^#() -> c_5()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)
       , p(s(X)) -> X}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , p(s(X)) -> X
               , f^#(0()) -> c_0(0^#())
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , 0^#() -> c_5()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(n__0()) -> 0()
             , activate(X) -> X
             , p(s(X)) -> X
             , f^#(0()) -> c_0(0^#())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(n__0()) -> 0()
               , activate(X) -> X
               , p(s(X)) -> X
               , f^#(0()) -> c_0(0^#())}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [5]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0^#() -> c_5()}
            and weakly orienting the rules
            {  activate(n__0()) -> 0()
             , activate(X) -> X
             , p(s(X)) -> X
             , f^#(0()) -> c_0(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#() -> c_5()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [8]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [4]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  0^#() -> c_5()
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , p(s(X)) -> X
             , f^#(0()) -> c_0(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [8]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [3]
                  0^#() = [1]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {0() -> n__0()}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , 0^#() -> c_5()
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , p(s(X)) -> X
             , f^#(0()) -> c_0(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0() -> n__0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [7]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [3]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s(X) -> n__s(X)}
            and weakly orienting the rules
            {  0() -> n__0()
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , 0^#() -> c_5()
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , p(s(X)) -> X
             , f^#(0()) -> c_0(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s(X) -> n__s(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [7]
                  s(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [5]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [1]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [8]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  s(X) -> n__s(X)
             , 0() -> n__0()
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , 0^#() -> c_5()
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , p(s(X)) -> X
             , f^#(0()) -> c_0(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [4]
                  n__f(x1) = [1] x1 + [1]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [9]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [2]
                  c_0(x1) = [1] x1 + [1]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [8]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  activate(n__s(X)) -> s(activate(X))
                 , f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , f(s(0())) -> f(p(s(0())))
                 , f(X) -> n__f(X)}
              Weak Rules:
                {  activate(n__f(X)) -> f(activate(X))
                 , s(X) -> n__s(X)
                 , 0() -> n__0()
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , 0^#() -> c_5()
                 , activate(n__0()) -> 0()
                 , activate(X) -> X
                 , p(s(X)) -> X
                 , f^#(0()) -> c_0(0^#())}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  activate(n__s(X)) -> s(activate(X))
                   , f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , f(s(0())) -> f(p(s(0())))
                   , f(X) -> n__f(X)}
                Weak Rules:
                  {  activate(n__f(X)) -> f(activate(X))
                   , s(X) -> n__s(X)
                   , 0() -> n__0()
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , 0^#() -> c_5()
                   , activate(n__0()) -> 0()
                   , activate(X) -> X
                   , p(s(X)) -> X
                   , f^#(0()) -> c_0(0^#())}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(5) -> 5
                 , f_1(5) -> 15
                 , f_1(15) -> 4
                 , f_2(16) -> 4
                 , f_2(16) -> 5
                 , f_2(16) -> 15
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 15
                 , 0_2() -> 11
                 , 0_2() -> 16
                 , 0_3() -> 18
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 5
                 , cons_0(2, 2) -> 15
                 , cons_1(5, 8) -> 4
                 , cons_2(11, 12) -> 5
                 , cons_2(11, 12) -> 15
                 , cons_2(16, 12) -> 4
                 , cons_3(18, 19) -> 4
                 , cons_3(18, 19) -> 5
                 , cons_3(18, 19) -> 15
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_0(2) -> 15
                 , n__f_1(4) -> 4
                 , n__f_1(9) -> 8
                 , n__f_2(5) -> 5
                 , n__f_2(5) -> 15
                 , n__f_2(13) -> 12
                 , n__f_2(15) -> 4
                 , n__f_3(16) -> 4
                 , n__f_3(16) -> 5
                 , n__f_3(16) -> 15
                 , n__f_3(20) -> 19
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 5
                 , n__s_0(2) -> 15
                 , n__s_1(5) -> 4
                 , n__s_1(5) -> 5
                 , n__s_1(5) -> 15
                 , n__s_1(10) -> 9
                 , n__s_2(11) -> 17
                 , n__s_2(14) -> 13
                 , n__s_3(21) -> 20
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 5
                 , n__0_0() -> 15
                 , n__0_1() -> 5
                 , n__0_1() -> 10
                 , n__0_1() -> 15
                 , n__0_2() -> 11
                 , n__0_2() -> 14
                 , n__0_2() -> 16
                 , n__0_3() -> 18
                 , n__0_3() -> 21
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(5) -> 15
                 , s_2(11) -> 17
                 , p_1(5) -> 15
                 , p_2(17) -> 16
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(2) -> 15
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , c_0_0(1) -> 3
                 , c_0_1(7) -> 6
                 , 0^#_0() -> 1
                 , 0^#_1() -> 7
                 , c_5_0() -> 1
                 , c_5_1() -> 7
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   7) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(X) -> c_3()}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)
       , p(s(X)) -> X}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , p(s(X)) -> X
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , f^#(X) -> c_3()}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(X) -> X
             , 0() -> n__0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(X) -> X
               , 0() -> n__0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {f^#(X) -> c_3()}
            and weakly orienting the rules
            {  activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {f^#(X) -> c_3()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [4]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [4]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  f^#(X) -> c_3()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p(s(X)) -> X}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(X) -> c_3()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p(s(X)) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__0()) -> 0()}
            and weakly orienting the rules
            {  p(s(X)) -> X
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(X) -> c_3()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__0()) -> 0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s(X) -> n__s(X)}
            and weakly orienting the rules
            {  activate(n__0()) -> 0()
             , p(s(X)) -> X
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(X) -> c_3()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s(X) -> n__s(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [9]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [4]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [8]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  s(X) -> n__s(X)
             , activate(n__0()) -> 0()
             , p(s(X)) -> X
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , f^#(X) -> c_3()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [1]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [4]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [15]
                  c_6(x1) = [1] x1 + [12]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  activate(n__s(X)) -> s(activate(X))
                 , f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , f(s(0())) -> f(p(s(0())))
                 , f(X) -> n__f(X)}
              Weak Rules:
                {  activate(n__f(X)) -> f(activate(X))
                 , s(X) -> n__s(X)
                 , activate(n__0()) -> 0()
                 , p(s(X)) -> X
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , f^#(X) -> c_3()
                 , activate(X) -> X
                 , 0() -> n__0()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  activate(n__s(X)) -> s(activate(X))
                   , f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , f(s(0())) -> f(p(s(0())))
                   , f(X) -> n__f(X)}
                Weak Rules:
                  {  activate(n__f(X)) -> f(activate(X))
                   , s(X) -> n__s(X)
                   , activate(n__0()) -> 0()
                   , p(s(X)) -> X
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , f^#(X) -> c_3()
                   , activate(X) -> X
                   , 0() -> n__0()}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(5) -> 5
                 , f_1(5) -> 12
                 , f_1(12) -> 4
                 , f_2(13) -> 4
                 , f_2(13) -> 5
                 , f_2(13) -> 12
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 12
                 , 0_2() -> 8
                 , 0_2() -> 13
                 , 0_3() -> 15
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 5
                 , cons_0(2, 2) -> 12
                 , cons_1(5, 7) -> 4
                 , cons_2(8, 9) -> 5
                 , cons_2(8, 9) -> 12
                 , cons_2(13, 9) -> 4
                 , cons_3(15, 16) -> 4
                 , cons_3(15, 16) -> 5
                 , cons_3(15, 16) -> 12
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_0(2) -> 12
                 , n__f_1(4) -> 4
                 , n__f_1(4) -> 7
                 , n__f_2(5) -> 5
                 , n__f_2(5) -> 12
                 , n__f_2(10) -> 9
                 , n__f_2(12) -> 4
                 , n__f_3(13) -> 4
                 , n__f_3(13) -> 5
                 , n__f_3(13) -> 12
                 , n__f_3(17) -> 16
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 5
                 , n__s_0(2) -> 12
                 , n__s_1(5) -> 4
                 , n__s_1(5) -> 5
                 , n__s_1(5) -> 12
                 , n__s_2(8) -> 14
                 , n__s_2(11) -> 10
                 , n__s_3(18) -> 17
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 5
                 , n__0_0() -> 12
                 , n__0_1() -> 5
                 , n__0_1() -> 12
                 , n__0_2() -> 8
                 , n__0_2() -> 11
                 , n__0_2() -> 13
                 , n__0_3() -> 15
                 , n__0_3() -> 18
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(5) -> 12
                 , s_2(8) -> 14
                 , p_1(5) -> 12
                 , p_2(14) -> 13
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(2) -> 12
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , c_3_0() -> 1
                 , c_3_0() -> 3
                 , c_3_1() -> 6
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   8) {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
       , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
      
      The usable rules for this path are the following:
      {  p(s(X)) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  p(s(X)) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
               , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  p(s(X)) -> X
               , 0() -> n__0()
               , activate(X) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [1]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__0()) -> 0()}
            and weakly orienting the rules
            {  p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__0()) -> 0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [1]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  activate(n__0()) -> 0()
             , p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [7]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [4]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [10]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s(X) -> n__s(X)}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__0()) -> 0()
             , p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s(X) -> n__s(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [1]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [15]
                  n__f(x1) = [1] x1 + [1]
                  n__s(x1) = [1] x1 + [1]
                  n__0() = [0]
                  s(x1) = [1] x1 + [2]
                  p(x1) = [1] x1 + [4]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [1]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  s(X) -> n__s(X)
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__0()) -> 0()
             , p(s(X)) -> X
             , 0() -> n__0()
             , activate(X) -> X}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [1]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [8]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [1] x1 + [9]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [8]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  activate(n__s(X)) -> s(activate(X))
                 , f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , f(s(0())) -> f(p(s(0())))
                 , f(X) -> n__f(X)
                 , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
              Weak Rules:
                {  activate(n__f(X)) -> f(activate(X))
                 , s(X) -> n__s(X)
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , activate(n__0()) -> 0()
                 , p(s(X)) -> X
                 , 0() -> n__0()
                 , activate(X) -> X}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  activate(n__s(X)) -> s(activate(X))
                   , f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , f(s(0())) -> f(p(s(0())))
                   , f(X) -> n__f(X)
                   , f^#(s(0())) -> c_1(f^#(p(s(0()))))}
                Weak Rules:
                  {  activate(n__f(X)) -> f(activate(X))
                   , s(X) -> n__s(X)
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , activate(n__0()) -> 0()
                   , p(s(X)) -> X
                   , 0() -> n__0()
                   , activate(X) -> X}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(5) -> 5
                 , f_1(5) -> 12
                 , f_1(12) -> 4
                 , f_2(13) -> 4
                 , f_2(13) -> 5
                 , f_2(13) -> 12
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 12
                 , 0_2() -> 8
                 , 0_2() -> 13
                 , 0_3() -> 17
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 5
                 , cons_0(2, 2) -> 12
                 , cons_1(5, 7) -> 4
                 , cons_2(8, 9) -> 5
                 , cons_2(8, 9) -> 12
                 , cons_2(13, 9) -> 4
                 , cons_3(17, 18) -> 4
                 , cons_3(17, 18) -> 5
                 , cons_3(17, 18) -> 12
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_0(2) -> 12
                 , n__f_1(4) -> 4
                 , n__f_1(4) -> 7
                 , n__f_2(5) -> 5
                 , n__f_2(5) -> 12
                 , n__f_2(10) -> 9
                 , n__f_2(12) -> 4
                 , n__f_3(13) -> 4
                 , n__f_3(13) -> 5
                 , n__f_3(13) -> 12
                 , n__f_3(19) -> 18
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 5
                 , n__s_0(2) -> 12
                 , n__s_1(5) -> 4
                 , n__s_1(5) -> 5
                 , n__s_1(5) -> 12
                 , n__s_2(8) -> 14
                 , n__s_2(11) -> 10
                 , n__s_3(20) -> 19
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 5
                 , n__0_0() -> 12
                 , n__0_1() -> 5
                 , n__0_1() -> 12
                 , n__0_2() -> 8
                 , n__0_2() -> 11
                 , n__0_2() -> 13
                 , n__0_3() -> 17
                 , n__0_3() -> 20
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(5) -> 12
                 , s_2(8) -> 14
                 , p_1(5) -> 12
                 , p_2(14) -> 13
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(2) -> 12
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , f^#_1(12) -> 15
                 , f^#_2(13) -> 16
                 , c_1_1(15) -> 3
                 , c_1_2(16) -> 6
                 , c_1_2(16) -> 15
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   9) {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)
       , p(s(X)) -> X}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , p(s(X)) -> X
               , activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(X) -> X
             , 0() -> n__0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(X) -> X
               , 0() -> n__0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__0()) -> 0()}
            and weakly orienting the rules
            {  activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__0()) -> 0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
            and weakly orienting the rules
            {  activate(n__0()) -> 0()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__f(X)) -> c_6(f^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [5]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p(s(X)) -> X}
            and weakly orienting the rules
            {  activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p(s(X)) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [4]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s(X) -> n__s(X)}
            and weakly orienting the rules
            {  p(s(X)) -> X
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s(X) -> n__s(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [2]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [1] x1 + [1]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  s(X) -> n__s(X)
             , p(s(X)) -> X
             , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [1]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [1] x1 + [1]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [0]
                  c_6(x1) = [1] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  activate(n__s(X)) -> s(activate(X))
                 , f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , f(s(0())) -> f(p(s(0())))
                 , f(X) -> n__f(X)}
              Weak Rules:
                {  activate(n__f(X)) -> f(activate(X))
                 , s(X) -> n__s(X)
                 , p(s(X)) -> X
                 , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                 , activate(n__0()) -> 0()
                 , activate(X) -> X
                 , 0() -> n__0()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  activate(n__s(X)) -> s(activate(X))
                   , f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , f(s(0())) -> f(p(s(0())))
                   , f(X) -> n__f(X)}
                Weak Rules:
                  {  activate(n__f(X)) -> f(activate(X))
                   , s(X) -> n__s(X)
                   , p(s(X)) -> X
                   , activate^#(n__f(X)) -> c_6(f^#(activate(X)))
                   , activate(n__0()) -> 0()
                   , activate(X) -> X
                   , 0() -> n__0()}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(5) -> 5
                 , f_1(5) -> 12
                 , f_1(12) -> 4
                 , f_2(13) -> 4
                 , f_2(13) -> 5
                 , f_2(13) -> 12
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 12
                 , 0_2() -> 8
                 , 0_2() -> 13
                 , 0_3() -> 15
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 5
                 , cons_0(2, 2) -> 12
                 , cons_1(5, 7) -> 4
                 , cons_2(8, 9) -> 5
                 , cons_2(8, 9) -> 12
                 , cons_2(13, 9) -> 4
                 , cons_3(15, 16) -> 4
                 , cons_3(15, 16) -> 5
                 , cons_3(15, 16) -> 12
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_0(2) -> 12
                 , n__f_1(4) -> 4
                 , n__f_1(4) -> 7
                 , n__f_2(5) -> 5
                 , n__f_2(5) -> 12
                 , n__f_2(10) -> 9
                 , n__f_2(12) -> 4
                 , n__f_3(13) -> 4
                 , n__f_3(13) -> 5
                 , n__f_3(13) -> 12
                 , n__f_3(17) -> 16
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 5
                 , n__s_0(2) -> 12
                 , n__s_1(5) -> 4
                 , n__s_1(5) -> 5
                 , n__s_1(5) -> 12
                 , n__s_2(8) -> 14
                 , n__s_2(11) -> 10
                 , n__s_3(18) -> 17
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 5
                 , n__0_0() -> 12
                 , n__0_1() -> 5
                 , n__0_1() -> 12
                 , n__0_2() -> 8
                 , n__0_2() -> 11
                 , n__0_2() -> 13
                 , n__0_3() -> 15
                 , n__0_3() -> 18
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(5) -> 12
                 , s_2(8) -> 14
                 , p_1(5) -> 12
                 , p_2(14) -> 13
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(2) -> 12
                 , f^#_0(2) -> 1
                 , f^#_0(4) -> 3
                 , f^#_1(5) -> 6
                 , activate^#_0(2) -> 1
                 , c_6_0(3) -> 1
                 , c_6_1(6) -> 1}
      
   10)
      {activate^#(n__s(X)) -> c_7(s^#(activate(X)))}
      
      The usable rules for this path are the following:
      {  activate(n__f(X)) -> f(activate(X))
       , activate(n__s(X)) -> s(activate(X))
       , activate(n__0()) -> 0()
       , activate(X) -> X
       , s(X) -> n__s(X)
       , 0() -> n__0()
       , f(0()) -> cons(0(), n__f(n__s(n__0())))
       , f(s(0())) -> f(p(s(0())))
       , f(X) -> n__f(X)
       , p(s(X)) -> X}
      
        We have applied the subprocessor on the union of usable rules and weak (innermost) dependency pairs.
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost runtime-complexity with respect to
            Rules:
              {  activate(n__f(X)) -> f(activate(X))
               , activate(n__s(X)) -> s(activate(X))
               , activate(n__0()) -> 0()
               , activate(X) -> X
               , s(X) -> n__s(X)
               , 0() -> n__0()
               , f(0()) -> cons(0(), n__f(n__s(n__0())))
               , f(s(0())) -> f(p(s(0())))
               , f(X) -> n__f(X)
               , p(s(X)) -> X
               , activate^#(n__s(X)) -> c_7(s^#(activate(X)))}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {  activate(X) -> X
             , 0() -> n__0()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {  activate(X) -> X
               , 0() -> n__0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [8]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__0()) -> 0()}
            and weakly orienting the rules
            {  activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__0()) -> 0()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__s(X)) -> c_7(s^#(activate(X)))}
            and weakly orienting the rules
            {  activate(n__0()) -> 0()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__s(X)) -> c_7(s^#(activate(X)))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [1]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [5]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {p(s(X)) -> X}
            and weakly orienting the rules
            {  activate^#(n__s(X)) -> c_7(s^#(activate(X)))
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p(s(X)) -> X}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [1]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [4]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {s(X) -> n__s(X)}
            and weakly orienting the rules
            {  p(s(X)) -> X
             , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {s(X) -> n__s(X)}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [0]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [8]
                  p(x1) = [1] x1 + [2]
                  activate(x1) = [1] x1 + [1]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [1]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [9]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [1]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            We apply the weight gap principle, strictly orienting the rules
            {activate(n__f(X)) -> f(activate(X))}
            and weakly orienting the rules
            {  s(X) -> n__s(X)
             , p(s(X)) -> X
             , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
             , activate(n__0()) -> 0()
             , activate(X) -> X
             , 0() -> n__0()}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate(n__f(X)) -> f(activate(X))}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [1] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [1] x1 + [1] x2 + [0]
                  n__f(x1) = [1] x1 + [1]
                  n__s(x1) = [1] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [1] x1 + [0]
                  activate(x1) = [1] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [1] x1 + [1]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [1] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'fastest of 'combine', 'Bounds with default enrichment', 'Bounds with default enrichment''
            ------------------------------------------------------------------------------------------
            Answer:           YES(?,O(n^1))
            Input Problem:    innermost relative runtime-complexity with respect to
              Strict Rules:
                {  activate(n__s(X)) -> s(activate(X))
                 , f(0()) -> cons(0(), n__f(n__s(n__0())))
                 , f(s(0())) -> f(p(s(0())))
                 , f(X) -> n__f(X)}
              Weak Rules:
                {  activate(n__f(X)) -> f(activate(X))
                 , s(X) -> n__s(X)
                 , p(s(X)) -> X
                 , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
                 , activate(n__0()) -> 0()
                 , activate(X) -> X
                 , 0() -> n__0()}
            
            Details:         
              The problem was solved by processor 'Bounds with default enrichment':
              'Bounds with default enrichment'
              --------------------------------
              Answer:           YES(?,O(n^1))
              Input Problem:    innermost relative runtime-complexity with respect to
                Strict Rules:
                  {  activate(n__s(X)) -> s(activate(X))
                   , f(0()) -> cons(0(), n__f(n__s(n__0())))
                   , f(s(0())) -> f(p(s(0())))
                   , f(X) -> n__f(X)}
                Weak Rules:
                  {  activate(n__f(X)) -> f(activate(X))
                   , s(X) -> n__s(X)
                   , p(s(X)) -> X
                   , activate^#(n__s(X)) -> c_7(s^#(activate(X)))
                   , activate(n__0()) -> 0()
                   , activate(X) -> X
                   , 0() -> n__0()}
              
              Details:         
                The problem is Match-bounded by 3.
                The enriched problem is compatible with the following automaton:
                {  f_0(4) -> 4
                 , f_1(5) -> 5
                 , f_1(5) -> 12
                 , f_1(12) -> 4
                 , f_2(13) -> 4
                 , f_2(13) -> 5
                 , f_2(13) -> 12
                 , 0_0() -> 4
                 , 0_1() -> 5
                 , 0_1() -> 12
                 , 0_2() -> 8
                 , 0_2() -> 13
                 , 0_3() -> 15
                 , cons_0(2, 2) -> 2
                 , cons_0(2, 2) -> 4
                 , cons_0(2, 2) -> 5
                 , cons_0(2, 2) -> 12
                 , cons_1(5, 7) -> 4
                 , cons_2(8, 9) -> 5
                 , cons_2(8, 9) -> 12
                 , cons_2(13, 9) -> 4
                 , cons_3(15, 16) -> 4
                 , cons_3(15, 16) -> 5
                 , cons_3(15, 16) -> 12
                 , n__f_0(2) -> 2
                 , n__f_0(2) -> 4
                 , n__f_0(2) -> 5
                 , n__f_0(2) -> 12
                 , n__f_1(4) -> 4
                 , n__f_1(4) -> 7
                 , n__f_2(5) -> 5
                 , n__f_2(5) -> 12
                 , n__f_2(10) -> 9
                 , n__f_2(12) -> 4
                 , n__f_3(13) -> 4
                 , n__f_3(13) -> 5
                 , n__f_3(13) -> 12
                 , n__f_3(17) -> 16
                 , n__s_0(2) -> 2
                 , n__s_0(2) -> 4
                 , n__s_0(2) -> 5
                 , n__s_0(2) -> 12
                 , n__s_1(5) -> 4
                 , n__s_1(5) -> 5
                 , n__s_1(5) -> 12
                 , n__s_2(8) -> 14
                 , n__s_2(11) -> 10
                 , n__s_3(18) -> 17
                 , n__0_0() -> 2
                 , n__0_0() -> 4
                 , n__0_0() -> 5
                 , n__0_0() -> 12
                 , n__0_1() -> 5
                 , n__0_1() -> 12
                 , n__0_2() -> 8
                 , n__0_2() -> 11
                 , n__0_2() -> 13
                 , n__0_3() -> 15
                 , n__0_3() -> 18
                 , s_1(5) -> 4
                 , s_1(5) -> 5
                 , s_1(5) -> 12
                 , s_2(8) -> 14
                 , p_1(5) -> 12
                 , p_2(14) -> 13
                 , activate_0(2) -> 4
                 , activate_1(2) -> 5
                 , activate_1(2) -> 12
                 , s^#_0(2) -> 1
                 , s^#_0(4) -> 3
                 , s^#_1(5) -> 6
                 , activate^#_0(2) -> 1
                 , c_7_0(3) -> 1
                 , c_7_1(6) -> 1}
      
   11)
      {p^#(s(X)) -> c_2()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           0() = [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__f(x1) = [0] x1 + [0]
           n__s(x1) = [0] x1 + [0]
           n__0() = [0]
           s(x1) = [0] x1 + [0]
           p(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           0^#() = [0]
           c_1(x1) = [0] x1 + [0]
           p^#(x1) = [0] x1 + [0]
           c_2() = [0]
           c_3() = [0]
           s^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {p^#(s(X)) -> c_2()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {p^#(s(X)) -> c_2()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {p^#(s(X)) -> c_2()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__s(x1) = [0] x1 + [0]
                  n__0() = [0]
                  s(x1) = [1] x1 + [0]
                  p(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [1] x1 + [1]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [0] x1 + [0]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {p^#(s(X)) -> c_2()}
            
            Details:         
              The given problem does not contain any strict rules
      
   12)
      {  activate^#(n__0()) -> c_8(0^#())
       , 0^#() -> c_5()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           0() = [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__f(x1) = [0] x1 + [0]
           n__s(x1) = [0] x1 + [0]
           n__0() = [0]
           s(x1) = [0] x1 + [0]
           p(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           0^#() = [0]
           c_1(x1) = [0] x1 + [0]
           p^#(x1) = [0] x1 + [0]
           c_2() = [0]
           c_3() = [0]
           s^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {0^#() -> c_5()}
            Weak Rules: {activate^#(n__0()) -> c_8(0^#())}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {0^#() -> c_5()}
            and weakly orienting the rules
            {activate^#(n__0()) -> c_8(0^#())}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {0^#() -> c_5()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__s(x1) = [0] x1 + [0]
                  n__0() = [0]
                  s(x1) = [0] x1 + [0]
                  p(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [1]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules:
                {  0^#() -> c_5()
                 , activate^#(n__0()) -> c_8(0^#())}
            
            Details:         
              The given problem does not contain any strict rules
      
   13)
      {activate^#(n__0()) -> c_8(0^#())}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           0() = [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__f(x1) = [0] x1 + [0]
           n__s(x1) = [0] x1 + [0]
           n__0() = [0]
           s(x1) = [0] x1 + [0]
           p(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           0^#() = [0]
           c_1(x1) = [0] x1 + [0]
           p^#(x1) = [0] x1 + [0]
           c_2() = [0]
           c_3() = [0]
           s^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {activate^#(n__0()) -> c_8(0^#())}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(n__0()) -> c_8(0^#())}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(n__0()) -> c_8(0^#())}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__s(x1) = [0] x1 + [0]
                  n__0() = [0]
                  s(x1) = [0] x1 + [0]
                  p(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [1]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [1] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {activate^#(n__0()) -> c_8(0^#())}
            
            Details:         
              The given problem does not contain any strict rules
      
   14)
      {activate^#(X) -> c_9()}
      
      The usable rules for this path are empty.
      
        We have oriented the usable rules with the following strongly linear interpretation:
          Interpretation Functions:
           f(x1) = [0] x1 + [0]
           0() = [0]
           cons(x1, x2) = [0] x1 + [0] x2 + [0]
           n__f(x1) = [0] x1 + [0]
           n__s(x1) = [0] x1 + [0]
           n__0() = [0]
           s(x1) = [0] x1 + [0]
           p(x1) = [0] x1 + [0]
           activate(x1) = [0] x1 + [0]
           f^#(x1) = [0] x1 + [0]
           c_0(x1) = [0] x1 + [0]
           0^#() = [0]
           c_1(x1) = [0] x1 + [0]
           p^#(x1) = [0] x1 + [0]
           c_2() = [0]
           c_3() = [0]
           s^#(x1) = [0] x1 + [0]
           c_4() = [0]
           c_5() = [0]
           activate^#(x1) = [0] x1 + [0]
           c_6(x1) = [0] x1 + [0]
           c_7(x1) = [0] x1 + [0]
           c_8(x1) = [0] x1 + [0]
           c_9() = [0]
        
        We have applied the subprocessor on the resulting DP-problem:
        
          'Weight Gap Principle'
          ----------------------
          Answer:           YES(?,O(n^1))
          Input Problem:    innermost DP runtime-complexity with respect to
            Strict Rules: {activate^#(X) -> c_9()}
            Weak Rules: {}
          
          Details:         
            We apply the weight gap principle, strictly orienting the rules
            {activate^#(X) -> c_9()}
            and weakly orienting the rules
            {}
            using the following strongly linear interpretation:
              Processor 'Matrix Interpretation' oriented the following rules strictly:
              
              {activate^#(X) -> c_9()}
              
              Details:
                 Interpretation Functions:
                  f(x1) = [0] x1 + [0]
                  0() = [0]
                  cons(x1, x2) = [0] x1 + [0] x2 + [0]
                  n__f(x1) = [0] x1 + [0]
                  n__s(x1) = [0] x1 + [0]
                  n__0() = [0]
                  s(x1) = [0] x1 + [0]
                  p(x1) = [0] x1 + [0]
                  activate(x1) = [0] x1 + [0]
                  f^#(x1) = [0] x1 + [0]
                  c_0(x1) = [0] x1 + [0]
                  0^#() = [0]
                  c_1(x1) = [0] x1 + [0]
                  p^#(x1) = [0] x1 + [0]
                  c_2() = [0]
                  c_3() = [0]
                  s^#(x1) = [0] x1 + [0]
                  c_4() = [0]
                  c_5() = [0]
                  activate^#(x1) = [1] x1 + [4]
                  c_6(x1) = [0] x1 + [0]
                  c_7(x1) = [0] x1 + [0]
                  c_8(x1) = [0] x1 + [0]
                  c_9() = [0]
              
            Finally we apply the subprocessor
            'Empty TRS'
            -----------
            Answer:           YES(?,O(1))
            Input Problem:    innermost DP runtime-complexity with respect to
              Strict Rules: {}
              Weak Rules: {activate^#(X) -> c_9()}
            
            Details:         
              The given problem does not contain any strict rules